Modell:

NCMRWF(National Centre for Medium Range Weather Forecasting from India)

Aktualisierung:
1 times per day, from 00:00 UTC
Greenwich Mean Time:
12:00 UTC = 13:00 MEZ
Auflösung:
0.125° x 0.125° (India, South Asia)
Parameter:
Maximum wind velocity of convective wind gusts
Beschreibung:
The method of Ivens (1987) is used by the forecasters at KNMI to predict the maximum wind velocity associated with heavy showers or thunderstorms. The method of Ivens is based on two multiple regression equations that were derived using about 120 summertime cases (April to September) between 1980 and 1983. The upper-air data were derived from the soundings at De Bilt, and observations of thunder by synop stations were used as an indicator of the presence of convection. The regression equations for the maximum wind velocity (wmax ) in m/s according to Ivens (1987) are:

where The amount of negative buoyancy, which is estimated in these equations by the difference of the potential wet-bulb temperature at 850 and at 500 hPa, and horizontal wind velocities at one or two fixed altitudes are used to estimate the maximum wind velocity. The effect of precipitation loading is not taken into account by the method of Ivens. (Source: KNMI)
NCMRWF:
NCMRWF
This modeling system is an up-graded version of NCEP GFS (as per 28 July 2010). A general description of the modeling system can be found in the following link:
http://www.ncmrwf.gov.in/t254-model/t254_des.pdf
An brief overview of GFS is given below.
------------------------------------------------------
Dynamics: Spectral, Hybrid sigma-p, Reduced Gaussian grids
Time integration: Leapfrog/Semi-implicit
Time filter: Asselin
Horizontal diffusion: 8th
order wavenumber dependent
Orography: Mean orography
Surface fluxes: Monin-obhukov Similarity
Turbulent fluxes: Non-local closure
SW Radiation; RRTM
LW Radiation: RRTM
Deep Convection: SAS
Shallow convection: Mass-flux based
Grid-scale condensation: Zhao Microphysics
Land Surface Processes: NOAH LSM
Cloud generation: Xu and Randal
Rainfall evaporation: Kessler
Air-sea interaction: Roughness length by Charnock
Gravity Wave Drag and mountain blocking: Based on Alpert
Sea-Ice model: Based on Winton
-----------------------------------------------
NWP:
Numerische Wettervorhersagen sind rechnergestützte Wettervorhersagen. Aus dem Zustand der Atmosphäre zu einem gegebenen Anfangszeitpunkt wird durch numerische Lösung der relevanten Gleichungen der Zustand zu späteren Zeiten berechnet. Diese Berechnungen umfassen teilweise mehr als 14 Tage und sind die Basis aller heutigen Wettervorhersagen.

In einem solchen numerischen Vorhersagemodell wird das Rechengebiet mit Gitterzellen und/oder durch eine spektrale Darstellung diskretisiert, so dass die relevanten physikalischen Größen, wie vor allem Temperatur, Luftdruck, Windrichtung und Windstärke, im dreidimensionalen Raum und als Funktion der Zeit dargestellt werden können. Die physikalischen Beziehungen, die den Zustand der Atmosphäre und seine Veränderung beschreiben, werden als System partieller Differentialgleichungen modelliert. Dieses dynamische System wird mit Verfahren der Numerik, welche als Computerprogramme meist in Fortran implementiert sind, näherungsweise gelöst. Aufgrund des großen Aufwands werden hierfür häufig Supercomputer eingesetzt.


Seite „Numerische Wettervorhersage“. In: Wikipedia, Die freie Enzyklopädie. Bearbeitungsstand: 21. Oktober 2009, 21:11 UTC. URL: http://de.wikipedia.org/w/index.php?title=Numerische_Wettervorhersage&oldid=65856709 (Abgerufen: 9. Februar 2010, 20:46 UTC)